Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 9(1): 4659, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30405105

ABSTRACT

Short wavelength free-electron lasers (FELs), providing pulses of ultrahigh photon intensity, have revolutionized spectroscopy on ionic targets. Their exceptional photon flux enables multiple photon absorptions within a single femtosecond pulse, which in turn allows for deep insights into the photoionization process itself as well as into evolving ionic states of a target. Here we employ ultraintense pulses from the FEL FERMI to spectroscopically investigate the sequential emission of electrons from gaseous, atomic argon in the neutral as well as the ionic ground state. A pronounced forward-backward symmetry breaking of the angularly resolved emission patterns with respect to the light propagation direction is experimentally observed and theoretically explained for the region of the Cooper minimum, where the asymmetry of electron emission is strongly enhanced. These findings aim to originate a better understanding of the fundamentals of photon momentum transfer in ionic matter.

2.
Phys Rev Lett ; 121(10): 103002, 2018 Sep 07.
Article in English | MEDLINE | ID: mdl-30240272

ABSTRACT

The role of the nuclear degrees of freedom in nonlinear two-photon single ionization of H_{2} molecules interacting with short and intense vacuum ultraviolet pulses is investigated, both experimentally and theoretically, by selecting single resonant vibronic intermediate neutral states. This high selectivity relies on the narrow bandwidth and tunability of the pulses generated at the FERMI free-electron laser. A sustained enhancement of dissociative ionization, which even exceeds nondissociative ionization, is observed and controlled as one selects progressively higher vibronic states. With the help of ab initio calculations for increasing pulse durations, the photoelectron and ion energy spectra obtained with velocity map imaging allow us to identify new photoionization pathways. With pulses of the order of 100 fs, the experiment probes a timescale that lies between that of ultrafast dynamical processes and that of steady state excitations.

3.
Nat Commun ; 8: 15461, 2017 06 05.
Article in English | MEDLINE | ID: mdl-28580940

ABSTRACT

Free-electron lasers providing ultra-short high-brightness pulses of X-ray radiation have great potential for a wide impact on science, and are a critical element for unravelling the structural dynamics of matter. To fully harness this potential, we must accurately know the X-ray properties: intensity, spectrum and temporal profile. Owing to the inherent fluctuations in free-electron lasers, this mandates a full characterization of the properties for each and every pulse. While diagnostics of these properties exist, they are often invasive and many cannot operate at a high-repetition rate. Here, we present a technique for circumventing this limitation. Employing a machine learning strategy, we can accurately predict X-ray properties for every shot using only parameters that are easily recorded at high-repetition rate, by training a model on a small set of fully diagnosed pulses. This opens the door to fully realizing the promise of next-generation high-repetition rate X-ray lasers.

4.
J Chem Phys ; 141(4): 044304, 2014 Jul 28.
Article in English | MEDLINE | ID: mdl-25084907

ABSTRACT

We study the relaxation dynamics of photoexcited Fe-II complexes dissolved in water and identify the relaxation pathway which the molecular complex follows in presence of a hydration shell of bound water at the interface between the complex and the solvent. Starting from a low-spin state, the photoexcited complex can reach the high-spin state via a cascade of different possible transitions involving electronic as well as vibrational relaxation processes. By numerically exact path integral calculations for the relaxational dynamics of a continuous solvent model, we find that the vibrational life times of the intermittent states are of the order of a few ps. Since the electronic rearrangement in the complex occurs on the time scale of about 100 fs, we find that the complex first rearranges itself in a high-spin and highly excited vibrational state, before it relaxes its energy to the solvent via vibrational relaxation transitions. By this, the relaxation pathway can be clearly identified. We find that the life time of the vibrational states increases with the size of the complex (within a spherical model), but decreases with the thickness of the hydration shell, indicating that the hydration shell acts as an additional source of fluctuations.

SELECTION OF CITATIONS
SEARCH DETAIL
...